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Modeling and predicting interactions
between the human amphiphysin SH3
domains and their peptide ligands based
on amino acid information

Jianfeng Cai,a‡ Rongying Ou,a‡ Yun-Sheng Xu,a∗ Li Yang,b Zhihua Linc

and Mao Shub,c∗‡

In this paper, VHESH, which was a novel set of amino acid descriptors including hydrophobic, electronic, steric, and
hydrogen bond contribution properties, were proposed to characterize the structures of the decapeptides binding the
human amphiphysin-1 Src homology 3 (SH3) domains, and QSAR model was constructed by partial least square (PLS) with
genetic algorithm-variable selection. It was found that diversified properties of the residues between P2 and P−3 (including
P2 and P−3) of the decapeptide (P4P3P2P1P0P−1P−2P−3P−4P−5) may contribute remarkable effect to the interactions between
the SH3 domain and decapeptides. Particularly, hydrogen bond and steric properties of P2 and electronic properties, steric
properties of P−3 may provide relatively large positive contributions to the interactions. Based on the GA-PLS model, a series
of decapeptides, with relatively high binding affinities were designed. These results showed that VHESH descriptors can well
represent the decapeptides. Furthermore, the model obtained, which showed low computational complexity, correlated VHESH
descriptors with the binding affinities as well as that VHESH may also be applied in QSAR studies of peptides. Copyright c© 2010
European Peptide Society and John Wiley & Sons, Ltd.

Supporting information may be found in the online version of this article
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Introduction

Protein–protein interactions play critical roles in regulating
many key biological processes. Many important protein–protein
interactions are mediated by peptide recognition modular
domains, among which Src homology 3 (SH3) domain is the
most abundant modular domain in the human proteome and
presents in a wide variety of proteins, such as kinases, GTPases,
lipases, and adaptor proteins, to lead diverse cellular processes
[1–3]. SH3 domains are small (55–70 amino acids) noncatalytic
protein modules that mediate protein–protein interactions by
binding to Pro-rich peptide sequences [4–6]. They recognize the
proline-rich peptides with the consensus motif PXXP (where P
is proline and X is any amino acid). Thereinafter, many other
peptide recognition domains have also been characterized for
their roles in signal transduction by mediating weak and transient
protein–protein interactions [7,8]. Human amphiphysin exists as
two similar proteins, amphiphysin-1 and amphiphysin-2, which
may be concerned with clathrin-mediated endocytosis, actin
function, and signaling pathways [9]. The specific interaction
between the amphiphysin-1 SH3 domain and dynamin plays a
crucial role in endocytic function.

Identification of the sequence motifs recognized by differ-
ent SH3 domains is an important step in understanding pro-
tein–peptides interactions, and peptide library experiments are
often used to accomplish this purpose [10], it is time-consuming
and costly to synthesize all ten-residue-long peptides appearing
in the human genome. Therefore, it is very important to de-

velop effective computation method and acquire some binding
information. A rigorous computational method concerning the
peptide–SH3 domain binding free energy for future recognition
binding sequences has been reported [11]. However, accurate
calculation of binding free energy is very complicated. In addition,
constructing protein–peptide systems are also time-consuming.
QSAR provides a practical tool for exploring the peptide–SH3 rela-
tionship. Previously, comparative molecular field analysis (CoMFA)
and comparative molecular similarity indices analysis (CoMSIA)
are used to explore the interactions between MHC proteins
and their peptide ligands coordination, and to acquire models
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Table 1. VHESH scales for amino acids

AAs VHESH1 VHESH2 VHESH3 VHESH4 VHESH5 VHESH6 VHESH7 VHESH8 VHESH9 VHESH10

Ala (A) 0.18 −1.35 −0.37 −0.9 −0.42 0.28 −0.9 −1.19 −1.13 −0.01

Arg (R) −1.34 1.28 0.44 2.09 −1.81 −0.2 0.47 1.83 2.56 0.07

Asn (N) −1.04 0.07 0.99 0.35 0.34 0.06 −0.6 0.67 1.01 −0.18

Asp (D) −1.06 −0.15 2.73 −0.47 1.15 0.13 −0.8 0.76 0.72 −0.14

Cys (C) 0.81 −1.07 −0.23 0.68 1.95 −0.14 −0.17 −1.26 −0.99 1.5

Gln (Q) −1.06 0.21 0.36 0.3 −0.27 0.49 −0.26 0.99 1.12 0.81

Glu (E) −1.04 0.33 2 −1.28 −0.35 0.49 −0.39 0.99 0.82 1.22

Gly (G) −0.16 −1.69 0.01 −1.7 −1.32 0.36 −2.37 −1.01 −1.25 −0.73

His (H) −0.36 0.41 0.38 1.34 −0.13 −0.92 0.34 0.23 0.25 0.14

Ile (I) 1.39 −0.14 −1.2 −0.95 −0.39 0.5 0.92 −1.19 −0.64 −0.72

Leu (L) 1.42 −0.37 −1.03 −0.79 −0.23 0.66 0.82 −0.9 −0.6 −1.72

Lys (K) −1.27 0.65 0.07 1.32 −2.11 −0.09 −0.07 1.81 1.28 −1.58

Met (M) 0.85 −0.27 −0.61 0.24 0.64 0.6 0.82 −0.63 −0.58 −1.04

Phe (F) 1.49 0.68 −0.73 0.59 1.18 0.34 1.31 −0.73 −0.81 −0.27

Pro (P) −0.35 −0.68 −0.57 −0.88 0.22 −3.9 −0.68 0.08 −0.97 1.71

Ser (S) −0.72 −0.82 0.29 −0.23 0.36 −0.18 −1.2 0.01 −0.08 0.66

Thr (T) −0.37 −0.6 −0.09 −0.17 −0.05 −0.08 −0.62 0.01 0.1 0.07

Trp (W) 1.18 2.39 −0.94 0.86 1 0.77 1.8 0.15 −0.13 −1.36

Tyr (Y) 0.37 1.62 −0.51 0.59 0.7 0.38 1.17 0.68 0.14 1.27

Val (V) 1.06 −0.48 −0.99 −0.98 −0.46 0.46 0.42 −1.29 −0.83 0.29

with good prediction ability [12]. Hou et al. [13] investigated the
interactions between the SH3 domain and its peptide ligands, and
constructed satisfying QSAR models using homology modeling,
molecular dynamics, and molecular field analysis. Liang et al. [14]
employed amino acid information to characterize the primary se-
quence of peptide, and built satisfying QSAR models using partial
least square (PLS). In this study, a novel amino acid descriptors,
VHESH (involving hydrophobic properties, steric properties, elec-
tronic properties, and hydrogen bond contribution), was acquired
and optimized based on previous work [15,16], and was then
employed to represent the structures of a set of decapeptides,
and some information concerning the interactions between SH3
domains and decapeptides was acquired based on QSAR model
which was constructed by PLS with genetic algorithm-variable
selection.

Principles and Methods

VHESH Descriptors and Structural Characterization

Considering that the nonbonding factors are influential to pro-
tein–peptide binding, 50 hydrophobic properties, 23 electronic
properties, 35 steric properties, and 5 hydrogen bond contribu-
tion properties of 20 coded amino acids properties were selected
from AA index data (supporting information Table S1). Then, the
four categories of properties matrices were processed by princi-
pal components analysis (PCA), respectively. For the matrices of
hydrophobic, electronic, steric, and hydrogen bond contribution
properties, the top two, four, two, and two significant principal
components accounting for 71.40, 77.74, 72.95, and 77.76% vari-
ance of original data matrices, respectively. These ten principal
components can replace the corresponding original data matri-
ces with less losing information. Here, tentatively called the ten
score vectors as VHESH (principal component score Vector of Hy-
drophobic, Electronic, Steric, and Hydrogen bond properties) for
short, VHESH1–VHESH2 were relate to hydrophobic properties,

VHESH3–VHESH6 to electronic properties, VHESH7–VHESH8 to
steric properties, and VHESH9–VHESH10 to hydrogen bonds con-
tribution properties (Table 1). PCA is done with statistics software
package SPSS 13.0.

For a set of peptide analogs, the peptide sequence can be now
quantified by ten VHESH variables. Here, a dipeptide is exemplified:
each of ten VHESH specially corresponded to each amino acid site
and there would be 20 VHESH scales (2 × 10 = 20) represent the
dipeptide molecule. Accordingly, peptide sequence with n amino
acids will generate n × 10 variables.

Variables Selection and PLS Modeling

In a QSAR data set, not all the structural descriptors were relevant
to biological activity; therefore, those redundant descriptors
should be deleted from the model in order to promote its
predictive capability. Here, variables selection method is carried
out by GA–PLS as a popular variables selection tool, which is
a sophisticated hybrid approach combining GA as a powerful
optimization method with PLS as a robust statistical method for
variables selection [17,18]. GA–PLS procedure includes five steps:
(i) the initial population of chromosomes is created by a random
value; (ii) the fitness of each chromosome is evaluated by the
internal prediction of the PLS model; (iii) the chromosome with
the least number of variables and the highest fitness is marked
as an informative chromosome; (iv) GA manipulation including
crossover, mutation, and replication is carried out; (v) return to
Step 2 and repeat Steps 2–4 unless the optimal chromosomes are
achieved.

PLS regression is a widely used modeling method, which
can avoid harmful effects in modeling due to multicollinearity,
and is particularly fit for regression when the number of
observations is less than the number of variables. PLS regression
combines basic functions of regression model, PCA, and canonical
correlation analysis [19,20]. And an excellent model should have
both favorable estimation ability for any internal sample and
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Figure 1. Calculated versus observed logarithm BLU values for the SH3
domain binding peptide. Training set samples are depicted by circles, test
set samples by squares.

outstanding predictive ability for any external sample [21]. PLS is
done with statistics software package SIMCA-P 10.0.

Dataset and Sample Selection

A set of decapeptides dataset was obtained from the report by
Landgraf et al. [22]. A combination of phage display and SPOT
synthesis was used to find all peptides in the yeast proteome
binding to eight yeast SH3 domains, and peptides in the human
proteome binding to two human SH3 domains by Landgraf et al.
[22]. For each domain, peptides matching the defined patterns
were synthesized at high density on cellulose membranes by SPOT
synthesis technology, and the membranes were probed with the
corresponding SH3 domain fused to glutathione-S-transferase
(GST). To enhance the data quality, we set two criteria to ensure
the reliability of selected samples: (i) peptides should have at least
two experimental results, and (ii) the SD of repeated experiments
should be less than the half of average value. As a result, 592
decapeptides were selected for QSAR modeling. Among 592
peptides data, 243 peptides with at least three experimental
binding values were regarded as training set to construct QSAR
model, and remaining 349 peptides were treated as test set to
validate the external predictive power of the QSAR model.

Results and Discussion

The optimal PLS model of training set is obtained by GA–PLS
techniques. Parameters were set as follows: the number of
population was 200, the maximum number of generations was
200, the generation gap was 0.8, the crossover frequency was 0.5,
the mutation rate was 0.005, and the fitting function was Q2

cv. An
optimal model including 39 variables was obtained from all trained
10 models. As a result, a QSAR model was constructed by extracting
two significant principal components, cumulatively explaining
the 71.2% variance of Y variable with cross-validation achieving
63.1%. The relative statistics are listed as R2 = 0.712, Q2 = 0.631,
Qext

2 = 0.578, RMSEE = 0.492, and RMSEP = 0.623. Figure 1 is the
plots of GA–PLS-calculated predicted versus observed logarithm
BLU values for the SH3 domain binding peptide (training set

Figure 2. Plots of the GA–PLS scores t1 versus u1 for the SH3 binding
decapeptides (different biological activities with different marks).

samples are depicted by circles, test set samples by squares),
wherein most samples are uniformly dispersed along a line passing
through the origin and forming an angle of 45◦. It was shown a
robust model.

Figure 2 is the plots of t1 versus u1 in the PLS model (t1 and u1
indicate the first principal component in the X and Y scoring space,
respectively) with different biological activities for three marking
symbols: square marks samples with the potency was greater than
3.3, while triangle marks samples with the potency between 2.3 and
3.3 and rhombus marks samples with the potency was less than 2.3.
It can be seen that distribution of decapeptide sequences exhibit
an increasing trend from the root left corner to the top right corner
in terms of their activities, and except for 13 samples (Nos. 5, 30, 48,
50, 67, 105, 111, 133, 148, 190, 204, 205, and 222), most compounds
with similar bioactivities are close together. By further analysis, it
is found that high binding decapeptides (including Nos. 5, 48, 105,
111, 133, and 222) possessing arginine residue in fifth residue of
the sequences, the middle binding decapeptides (including Nos.
67, 148, 190, and 204) having arginine or lysine residue in the first
or fifth residue of the sequence, and the low ones (including Nos.
30, 50, 199, and 205) are arginine or lysine in the fifth or eighth
residue of decapeptide. These positive charge amino acid residues
may take key roles in the SH3 domain–peptide interaction, hence,
all samples were carefully reserved in the model.

To validate normal hypothesis, we then implement the normal
probability of the standardized residual for the regression model.
Figure 3 shows that most of the residue errors follow a normal
distribution, with the only exceptions of samples 5, 105, 111, and
133, for which the standardized residues (SD) are beyond the range
of 2.5 [23]. So, the normal hypotheses are confirmed to be true.
It can be seen from the 20-random-permutation validation of the
PLS model (Figure 4) that intercepts of R2

cum and Q2
cv are 0.047

and −0.225, respectively. Therefore, it is considered that relatively
high values of R2

cum and Q2
cv are not resulted from accidental

factors.
According to the report by Hou et al. [13], the positions of

the decapeptide are defined as: P4P3P2P1P0P−1P−2P−3P−4P−5.
Description, coefficient, and variable importance in the projection
(VIP) of the variables of the PLS model are summarized in Table 2.
VIP is the sum of the variable influence over all model dimensions
and is a measure of variable importance. Higher VIP values indicate
good correlation between the variable and the model. It can be
seen that ten variables, including electronic properties of P−3,
hydrogen bond properties of P−3, steric properties of P−3, steric
properties of P0, steric properties of P1, steric properties of P2,

J. Pept. Sci. 2010; 16: 627–632 Copyright c© 2010 European Peptide Society and John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/psc
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Figure 3. Plots of cumulative probability of standardized residuals.

Figure 4. Y random permutations test in the GA–PLS model.

Figure 5. Distance of X space for predicted samples.

and hydrogen bond properties of P2, have the relatively larger VIP
values. These ten variables concern with the sites between P2 and
P−3 (including P2 and P−3), indicating that middle six residues of
decapeptide are closely correlated with the SH3 domains.

According to the coefficients of the PLS model equation
(Table 2), we can evaluate the contributions of various properties
of each peptide residue to the binding affinities. At the P−3, five
VHESH descriptors were selected, representing electronic, steric
property, and hydrogen bond contribution properties(v74, v75, v77,
v79, and v80). Among the electronic and hydrogen bond properties
(v74, v79, and v80) are remarkable with interactions between the

Table 2. Description, coefficient, and VIP of the variables for GA–PLS
model

No. Variable Site Variables property Coefficient VIP

1 v10 P4 Hydrogen bond (VHESH10) 0.033 0.413

2 v11 P3 Hydrophobic (VHESH1) 0.014 0.158

3 v13 P3 Electronic (VHESH3) −0.065 0.424

4 v14 P3 Electronic (VHESH4) 0.043 0.421

5 v15 P3 Electronic (VHESH5) −0.072 0.408

6 v17 P3 Steric (VHESH7) 0.040 0.286

7 v19 P3 Hydrogen bond (VHESH9) 0.032 0.410

8 v28 P2 Steric (VHESH8) 0.179 1.185

9 v30 P2 Hydrogen bond (VHESH10) 0.162 1.133

10 v37 P1 Steric (VHESH7) 0.064 0.984

11 v38 P1 Steric (VHESH8) −0.043 1.442

12 v40 P1 Hydrogen bond (VHESH10) 0.081 0.781

13 v47 P0 Steric (VHESH7) 0.135 0.760

14 v64 P−2 Electronic (VHESH4) 0.004 0.278

15 v65 P−2 Electronic (VHESH5) 0.026 0.191

16 v66 P−2 Electronic (VHESH6) −0.087 0.550

17 v68 P−2 Steric (VHESH8) 0.035 0.274

18 v74 P−3 Electronic (VHESH4) 0.258 2.421

19 v75 P−3 Electronic (VHESH5) −0.178 2.122

20 v77 P−3 Steric (VHESH7) 0.128 1.400

21 v79 P−3 Hydrogen bond (VHESH9) 0.281 2.472

22 v80 P−3 Hydrogen bond (VHESH10) 0.159 1.169

23 v81 P−4 Hydrophobic (VHESH1) −0.063 0.361

24 v83 P−4 Electronic (VHESH3) −0.016 0.171

25 v84 P−4 Electronic (VHESH4) 0.093 0.544

26 v90 P−4 Hydrogen bond (VHESH10) 0.063 0.383

27 v93 P−5 Electronic (VHESH3) −0.081 0.452

28 v96 P−5 Electronic (VHESH6) −0.005 0.067

29 v100 P−5 Hydrogen bond (VHESH10) −0.003 0.057

30 Constant – – 2.522 –

peptides and the SH3 domains. Cesareni et al. [24] suggest that
P−3 is essential to the binding specificity.

The VIP values of hydrogen bond and steric properties of P2 are
more than 1, and their corresponding coefficient are positive in
correlation with the GA–PLS model. Through the above analysis,
we can speculate that the properties of P2 may provide the

wileyonlinelibrary.com/journal/psc Copyright c© 2010 European Peptide Society and John Wiley & Sons, Ltd. J. Pept. Sci. 2010; 16: 627–632
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Table 3. Preferred amino acids at positions which are important for
affinities of decapeptide–SH3 domain

Sequence
position Property

Preferred
amino acids

Contribution to
activity

P2 Steric R, K, E, Q, L +
P2 Hydrogen bond C, E, P, Y +
P1 Steric A, C, G, I, V −
P0 Steric Y, W, F, I +
P−3 Electronic R, K, H, W +
P−3 Electronic R, K, G −
P−3 Steric Y, W, F, I +
P−3 Hydrogen bond R, N, Q, K +
P−3 Hydrogen bond C, E, P, Y +
+, positive; −, negative.

most contributions to the interactions between the peptides and
SH3 domains. In addition, Hou et al. [13] have reported that the
proline at P2 position has strong interactions with the SH3 domain.
In addition, coefficients of hydrogen bond and steric properties
at P1, and coefficient steric properties at P1 are also positive
contribution to the model. Preferred amino acids at positions that
are important for binding decapeptides containing five residues
are shown in Table 3. We can obtain peptides with demanding
decapeptide derivates by alteration of these important amino acid
residues.

Loading contributions, coefficients, and VIPs of PLS model show
that variables including steric, hydrogen bond, and electronic
properties of P2 and P−3 of decapeptide play important roles for
interactions between peptide and SH domain, to a certain extent
which supports the conclusion that fundamental action mode of
P2 and P−3 are anchoring to the SH3 domain [13,24].

Thus, the properties of P2 and P−3 of peptide sequence must be
considered when designing a new peptide sequence. For example,
derivatives of the SH3 binding peptide sequence (corresponding
to P81408, O94885, Q9NNY5, and Q16632) were obtained by
modifying the P2 and P−3 residue of the sequence. Table 4 presents
the new peptide sequences and their prediction binding affinities.
The results showed that most derivatives possess relatively high
antimicrobial activity, which may be due to the no charge amino
acid residue proline (P) replaced by positive charge ones (arginine
(R), lysine (K)), which increase electronic properties, hydrogen
bond properties, and binding affinity.

Plots of the distance to the PLS model in the X space are depicted
in Figure 5 to investigate the efficiency on recombination for new
sequences. It can be seen from it that the only two samples
overflow normalized distance to X of GA–PLS model critical value
of 1.276 at 5% significance level [25]. It shows that new design
decapeptide sequences are adapted to application domain of the
GA–PLS model, so some predicted sequences with high binding
affinity are considered to synthesis and test their binding affinities.

Conclusion

The VHESH descriptors were constructed by multivariate statistical
analysis and applied in the QSAR study of the decapeptides
binding the human amphiphysin-1 SH3 domains. By analysis,
steric, hydrogen bond, and electronic properties of decapeptide
play important roles on binding affinity. Especially, these properties
of P2 and P−3 of decapeptide make high contribution to binding
affinity. New derivatives of decapeptide (corresponding to P81408,
O94885, Q9NNY5, and Q16632) were obtained by modifying the P2

and P−3 residues of the sequence and display that some derivatives
possess relatively high binding affinity. The results showed that
VHESH descriptors have strong characterization capability, easy

Table 4. The new sequences of SH3 domain binding decapeptide with predicted activities

Identity Peptide Obsd Pred Identity Peptide Obsd Pred

P81408 PLPRRPPRAA 4.37 3.77 Q9NNY5 LPPKRPIKEV 2.57 2.55

P81408-1 PLRRRPPRAA ND 4.17 Q9NNY5-1 LPPKRPIREV ND 3.23

P81408-2 PLRRRPPKAA ND 3.49 Q9NNY5-2 LPRKRPIKEV ND 2.94

P81408-3 PLRRRPPHAA ND 3.33 Q9NNY5-3 LPRKRPIREV ND 3.62

P81408-4 PLRRRPPYAA ND 3.36 Q9NNY5-4 LPRKRPIYEV ND 2.81

P81408-5 PLKRRPPRAA ND 4.00 Q9NNY5-5 LPKKRPIREV ND 3.45

P81408-6 PLERRPPRAA ND 4.01 Q9NNY5-6 LPEKRPIKEV ND 2.79

P81408-7 PLERRPPKAA ND 3.34 Q9NNY5-7 LPEKRPIREV ND 3.46

P81408-8 PLQRRPPRAA ND 3.97 Q9NNY5-8 LPQKRPIREV ND 3.42

P81408-9 PLYRRPPRAA ND 3.92 Q9NNY5-9 LPYKRPIREV ND 3.37

O94885 EKPKRPTRRR 4.36 3.85 Q16632 QSPKRPPEDF 1.62 2.35

O94885-1 EKRKRPTRRR ND 4.24 Q16632-1 QSPKRPPRDF ND 3.48

O94885-2 EKRKRPTKRR ND 3.56 Q16632-2 QSRKRPPKDF ND 3.20

O94885-3 EKRKRPTHRR ND 3.41 Q16632-3 QSRKRPPRDF ND 3.87

O94885-4 EKRKRPTYRR ND 3.43 Q16632-4 QSRKRPPYDF ND 3.06

O94885-5 EKKKRPTRRR ND 4.07 Q16632-5 QSKKRPPRDF ND 3.70

O94885-6 EKKKRPTKRR ND 4.07 Q16632-6 QSEKRPPRDF ND 3.04

O94885-7 EKQKRPTRRR ND 4.04 Q16632-7 QSEKRPPHDF ND 3.72

O94885-8 EKCKRPTRRR ND 3.40 Q16632-8 QSQKRPPRDF ND 3.68

O94885-9 EKYKRPTRRR ND 3.99 Q16632-9 QSQKRPPFDF ND 3.62

ND, no data.

J. Pept. Sci. 2010; 16: 627–632 Copyright c© 2010 European Peptide Society and John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/psc
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operation, and clear physicochemical significance, and further
suggest broad application prospects in the QSAR field of peptides.
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